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ABSTRACT
In this work, we take on the role of an eavesdropper adversary who captures leakage from
client-server interactions during SELECT and JOIN queries on an encrypted SQL database.
We present a novel Leakage Abuse Attack (LAA) that uses dynamic programming to solve
the SI-LAA (Single-Column Incomplete Information LAA) problem optimally. We evaluate
how the accuracy of the SI-LAA is influenced by the type and percentage of querying by the
clients, as well as the number of plaintexts and ciphertexts. This approach is then extended to
the DI-LAA (Double-Column Incomplete Information LAA) problem, providing a heuristic
solution when used with the Partitioning Optimization Algorithm. We show that this
approach is optimal for special cases where datasets are totally ordered and implement
various heuristic sorting methods to make the heuristic attack more optimal for general cases.
Experimentation on real-world and artificially generated datasets has shown that both the
SI-LAA and DI-LAA can be solved with some success using Dynamic Programming.

INTRODUCTION
In a real-world scenario, encryption is a common method used by clients to ensure the
security of their databases so that adversaries will not gain access to the data, especially if the
data is confidential. Clients use encryption schemes such as CryptDB to encrypt their datasets
deterministically before storing the encrypted dataset on a cloud server, to retain the ability to
query the data. In our project, we investigate how secure this scheme is by taking on the role
of “man-in-the-middle” eavesdroppers standing between the client and the server. When the
client requests data from the server, the data exchanged between the client and the server
results in the eavesdropper gaining useful information about the database (otherwise known
as a leakage profile). Based on the leakage profile, leakage abuse attacks (LAAs) can be
conducted in order to deduce the encrypted values in these datasets. The input of a LAA is a
full or partial leakage profile of a particular crypto scheme and auxiliary information. The
output of this attack is the guessed mapping f of plaintexts to ciphertexts, and the probability
of this mapping, Pr[f]. This mapping allows us to make inferences about the encrypted data.
In this paper, we describe a novel LAA that investigates how to make use of partial
information from a single column (SI-LAA) and two columns (DI-LAA) using Dynamic
Programming. Our algorithm solves the Single Column Incomplete Information LAA
(SI-LAA) optimally and the Double Column Incomplete Information LAA (DI-LAA)
heuristically, and optimally in some cases. We have also experimentally demonstrated that
both LAAs can be solved with relatively high accuracy on real-world datasets.

BRIEF OVERVIEW OF SI-LAA AND DI-LAA
In the SI-LAA, there is one column of data of both auxiliary and ciphertext datasets. Some of
the encrypted values in the ciphertext column are unknown. This LAA models a scenario
where eavesdroppers gain access to some encrypted rows in a confidential database when
clients make a series of SELECT queries on it. As seen in Table 1, when one query is made,
all rows corresponding to that query are returned. The number of rows returned is leaked to



eavesdroppers, allowing them to learn the frequency information of that particular value.
Subsequently, the eavesdropper derives new frequency information when a different value is
queried by the client. As the client may not make all possible queries, the frequency
information obtained by the eavesdropper may not be complete (partial leakage profile).

Original dataset (T_1) The stakeholder has made 2
queries thus far:
1. SELECT (Encrypted value)
FROM T_1 WHERE
Encrypted value = A
2. SELECT (Encrypted value)
FROM T_1 WHERE
Encrypted value = C

Leaked dataset (T_2)

Encrypted value Frequency Encrypted value Frequency

A 100 A 100

B 78 C 59

C 59 “Unknown” 78

Fig 1: Example of Input Tables (left) and Output Table (right) in a SQL SELECT Query

We looked at 3 different scenarios of select queries: (1) Top-x% queries: Any queries that
are made are in the top-x% of frequencies; (2) Unweighted queries: The adversary is equally
likely to ask for any value in the columns’ range; (3) Weighted queries: The more often a
value appears in the column, the more likely that an adversary queries it.

In the DI-LAA, each auxiliary and ciphertext dataset has two columns of data and both
ciphertext columns have partial data. The client sends a JOIN request to the server, so values
found in the intersection of the two columns are combined to form a new column (that is
leaked to the eavesdropper), while values that are not found in this intersection are
“unknown”. An example of a JOIN query is shown in Tables 2 and 3.

Encrypted
value (T_1)

Frequency Encrypted
value (T_2)

Frequency JOIN(Encrypted value) FROM T_1 and T_2

Dog 4 Crocodile 5 Meerkat 23 Meerkat 30

Cat 9 Meerkat 30 Dog 4 Dog 15

Meerkat 23 Dog 15 “Unknown” 32 “Unknown” 25

Fly 10 Rabbit 13

Giraffe 3 Anteater 7
Fig 2: Example of Input Tables (left) and Output Table (right) in a SQL JOIN Query

SI-LAA: FRAMEWORK
We use a Dynamic Programming approach to solve the SI-LAA problem. Dynamic
Programming consists of recursively defined algorithms that store previously calculated
values to save on computational costs (memoisation). Stored data can be easily accessed for
use in subsequent steps. This is an improvement on the Brute Force approach - Dynamic
Programming algorithms reduce time and space complexity as they only calculate a portion
of all permutations based on key observations that govern the algorithm’s control flow. Our
key observation is that at each step of our algorithm, the largest unassigned auxiliary
probability should only be mapped to the highest possible ciphertext frequency or the
“unknown” row.



The inputs of the algorithm are:
(1) Vector a: a tuple of n auxiliary probabilities sorted in ascending order, [a₁, a₂, a₃, …, a ].
(2) Vector c: a tuple of (m+1) ciphertext frequencies, [c0, c1,c2, c3, … c ] where c0 is the sum
of ciphertext frequencies mapped to “Unknown”. c1 to cm are known ciphertext frequencies
sorted in ascending order.
The output is the mapping of ciphertext frequencies to auxiliary probabilities with the highest

probability. The probability of the mapping, Pr[f], is calculated as In
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our algorithm, we define DP[n,m,𝛅] where n and m refer to the number of unassigned
plaintexts (in a) and ciphertexts (in c), respectively, and 𝛅 refers to the sum of probabilities of
all plaintexts mapped to c0. DP[n,m,𝛅] stores previously calculated mappings and their
corresponding probabilities and can be retrieved for future calculations, reducing the number
of computations required. The flow of the algorithm is shown in Fig 1.

Case 1: If n<m, DP[n,m,𝛅] will return an error
instead of the probability.
Case 2: If m=0 and n≠0, all remaining
unassigned plaintexts are mapped to c0.
Case 3&4: If n>0 and m≤n, one of two
alternatives are chosen. In case 3, an is mapped
to cm. In case 4, an is mapped to c0.

Cases 3 and 4 apply the principle that the
highest probability is obtained when the highest
auxiliary probability is mapped to the highest
ciphertext frequency possible or when it is
mapped to the “Unknown” row. This principle
also proves how the algorithm solves the
SI-LAA problem optimally (see discussion on
optimality of  DP attack in Appendix A) .

Fig 3: Pseudocode (left) and Attack Control Flow (right) for DP attack on SI-LAA

SI-LAA: RESULTS AND DISCUSSION
We carried out various experiments using real-life datasets such as HCUP and voter databases
(for more information, see appendix B) and tested the accuracy of the attack for different
querying types and percentages. The accuracy of the attack is measured using: (1) “V-score” -
Percentage of known ciphertext values mapped correctly; (2) “R-score” - Percentage of
known ciphertext rows mapped correctly. Both these scores concern only the ciphertext
dataset and do not consider rows mapped to “Unknown”.

Our full results can be found in Appendix E. In this section, we summarise our results and
trends observed via various graphs.



Fig. 4: Graph of V-score against percentage queried
for large and small datasets

Fig. 5: Graph of Unweighted, Top-x%, and Weighted
querying against various datasets

As seen in Fig. 4, which compares the V-score for large
datasets (>90 rows) against that of small datasets (<10
rows), an increase in the number of rows leads to a
decrease in the accuracy of the attack, due to decreased
chances of mapping correctly when there are more values.
Datasets with fewer rows generally have V-scores and
R-scores close to 1.

As seen in Fig. 5, for the same percentage queried, the
average accuracy of the attack usually follows the order:
weighted (0.31) > top-x% (0.29) > unweighted (0.20), as
weighted and top-x% querying have a higher chance of
querying ciphertexts with high frequencies, and weighted
querying provides more variance to the data (explained
below).

As seen in Fig. 6, for unweighted querying, accuracy of
the attack increases with percentage queried. On average,
the V-score increases by 10%, from 0.179 to 0.288, as the
percentage queried increases from 10% to 90%. Given that
more values are “known” with a higher percentage queried,
the chances of mapping correctly should be higher as well.

As seen in Fig. 7, for the top-x% querying, as the V-score
and R-score are inversely correlated to the percentage
queried. This is because the smaller ciphertext frequencies
have less variance and the number of values matched
correctly remains approximately constant. Since the
proportion represented by these correctly matched values
decreases, the V-score and R-score decrease. On average,
as the percentage queried increases from 10% to 90%, the
V-score decreases by over 30%, from 0.625 to 0.297, and
the R-score decreases by 21% from 0.679 to 0.465.

As seen in Fig. 8, the higher the standard deviation of the
ciphertext frequencies, the higher the accuracy of the
attack. We compared the standard deviation of the sampled
ciphertext frequencies (using unweighted sampling)
derived from 5 similar datasets containing 100 plaintexts
each. As standard deviation of the ciphertext frequencies
increases from 2200 to 15320, V-score increases from 0.02
to 0.163. When the standard deviation of the ciphertext
frequencies is high, they are further from one another and
more distinct, so chances of mapping correctly increase.
This conclusion is valid only when the datasets have a
Zipfian distribution, since a high standard deviation of
ciphertext frequencies is usually representative of a Zipfian
(exponential) distribution. If the ciphertext frequencies
follow an oscillating/sinusoidal pattern, while standard

Fig. 6: Graph of V-score against percentage queried
using unweighted querying

Fig. 7: Graph of V-score against percentage queried
using Top-x% querying

Fig. 8: Graph of V-score against standard deviation
of ciphertext frequencies



deviation may be high, the highest and lowest ciphertext
frequencies are close to each other, so the chances of
mapping correctly is relatively low.

DI-LAA: FRAMEWORK
In this section, we introduce and compare variations of solutions to the DI-LAA problem,
which looks at two columns of partial data, instead of one column of partial data in the
SI-LAA. The DI-LAA problem is solved using the Dynamic Programming algorithm
(introduced above) and the Partitioning Optimization Approximation Algorithm (POAA; see
Appendix C). In each variation of the DI-LAA, the algorithms used for the attack differ
slightly and have varying degrees of success in solving the DI-LAA. However, for all the
cases, the inputs and outputs are the same. As compared to the SI-LAA which has 2 inputs,
the DI-LAA has 4 inputs:

(1) Vector a: a tuple of auxiliary data with n elements, [a1, a2, a3, …, a ].
(2) Vector b: a tuple of auxiliary data with n elements, [b1, b2, b3, …, b ].
(3) Vector c: a tuple of ciphertext data with (m+1) elements, [c0, c1, c2, c3, … cm].
(4) Vector d: a tuple of ciphertext data with with (m+1) elements, [d0, d1, d2, d3, … d ].
a (resp. b) is the auxiliary data corresponding to ciphertext frequency c (resp. d), both of
which refer to column 1 (resp. 2). c1-c in c [d1-d in d] represents all the frequencies of
values found in the intersection of the two columns of plaintext. c0 and d0, similarly, are
defined as the values not found in the intersection of the two columns of plaintext.

Similar to the SI-LAA, the output of the attack for the DI-LAA is a single mapping f of
plaintexts (a, b) to ciphertexts (c, d) that maximises the probability of the mapping,
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The goal is to return a high-probability mapping, f, of plaintexts to ciphertexts, which should
apply to both a-c and b-d pairs. This may not necessarily be the mapping of highest
probability as most of these attacks are only heuristic and this problem is hard. This is
because our key observation from the DP attack on the SI-LAA case does not apply here. The
two columns of auxiliary data may not follow similar distributions - for example, in the
lin-invlin case, the values in one column are strictly increasing, while the values in the other
are strictly decreasing. When ai (largest plaintext in a) is mapped to cm and this mapping is
applied to bi and dm, bi may not be the largest plaintext in vector b, and vice versa. Given the
set of {(ai,bi)} where i∈n, we define a partial ordering where (ai,bi)≤(aj,bj)⇔ai≤aj and bi≤bj.
However, this does not constitute a total ordering - there is no ordering of vectors a and b
such that a1≤a2≤a3…an and b1≤b2≤b3…bn. Hence, it is not guaranteed that mapping an to cm
and bn to dm always produces the mapping of the highest probability. We implemented several
different attacks to overcome this problem. The description of each algorithm, as well as the
results, can be found below.

DP1: FRAMEWORK
The key intuition of DP1 is to run the DP algorithm on both sets of auxiliary-ciphertext pairs,
as there are now two columns instead of one. The algorithm is described in Fig 9.
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Fig 9: DP1 algorithm pseudocode

No heuristic ordering is used - the DP algorithm is run on both columns and POAA is used to
divide the unknown values into c0 and d0. The mapping with the higher probability (f1 or f2) is
taken as the final mapping.

DP2: FRAMEWORK
The key intuition of DP2 makes use of the fact that some distributions are identical. DP2 uses
a modified version of the Dynamic Programming algorithm, as shown in Fig. 10.

𝐴𝑙𝑔 𝐷𝑃2 𝑛, 𝑚, δ
1
, δ

2( )
𝐹𝑜𝑟 𝑖 ∈ [𝑛] 𝑑𝑜 𝑓[𝑖] =⊥
𝐼𝑓 𝑛 < 𝑚 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑓, 0)
𝐼𝑓 𝑚 = 0 𝑡ℎ𝑒𝑛

𝑎' ← (𝑎
1
,..., 𝑎

𝑛
, δ

1
, 0)

𝑏' ← (𝑏
1
,..., 𝑏

𝑛
, 0, δ

2
)

𝑃 = 𝑃𝑂𝐴𝐴(𝑎', 𝑏', 𝑐
0
, 𝑑

0
)

𝐹𝑜𝑟 𝑖 ∈ [𝑛]:
𝐼𝑓 𝑖 ∈ 𝑃 𝑡ℎ𝑒𝑛 𝑓[𝑖] = 𝑀 + 1 ;  δ

1
← δ

1
+ 𝑎

𝑖
𝐸𝑙𝑠𝑒 𝑓[𝑖] ← 𝑀 + 2 ;  δ

2
← δ

2
+ 𝑏

𝑖

𝑅𝑒𝑡𝑢𝑟𝑛 𝑓, δ
1

𝑐
0 · δ

2
𝑑

0( )
𝐸𝑙𝑠𝑒

(𝑓
1
, 𝑝

1
) ← 𝐷𝑃2(𝑛 − 1, 𝑚 − 1, δ

1
, δ

2
)

𝑝
1

← 𝑝
1

· 𝑎
𝑖
𝑐

𝑚 · 𝑏
𝑖
𝑑

𝑚

(𝑓
2
, 𝑝

2
) ← 𝐷𝑃2(𝑛 − 1, 𝑚, δ

1
+ 𝑎

𝑖
, δ

2
)

(𝑓
3
, 𝑝

3
) ← 𝐷𝑃2(𝑛 − 1, 𝑚, δ

1
, δ

2
+ 𝑏

𝑖
)

𝐼𝑓 𝑝
1

≥ 𝑝
3
 𝑎𝑛𝑑 𝑝

1
≥ 𝑝

2
 𝑡ℎ𝑒𝑛 𝑓

1
[𝑛] ← 𝑚 ;  𝑅𝑒𝑡𝑢𝑟𝑛 (𝑓

1
, 𝑝

1
)

𝐼𝑓 𝑝
2

≥ 𝑝
3
 𝑡ℎ𝑒𝑛 𝑓

2
[𝑛] ← 𝑀 + 1 ;  𝑅𝑒𝑡𝑢𝑟𝑛 (𝑓

2
, 𝑝

2
)

𝐸𝑙𝑠𝑒 𝑓
3
[𝑛] ← 𝑀 + 2 ;  𝑅𝑒𝑡𝑢𝑟𝑛 (𝑓

3
, 𝑝

3
)

𝞮 = parameter defining how accurately we round the auxiliary values; M = number of
ciphertexts

Fig 10: Modified DP algorithm pseudocode for DP2 and DP3



As previously mentioned, the DI-LAA is suboptimal when the distributions are not totally
ordered. However, when the datasets are totally ordered (i.e. when a and b follow the same
distribution), the DP algorithm can be optimal - when ai is mapped to cm and bi is mapped to
dm, it is guaranteed that both ai and bi are the largest plaintexts in a and b respectively. Since
ai=bi for all n, the probability of the mapping can be simplified to
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efficiently solvable by slightly modifying the SI-LAA DP algorithm mentioned in Fig. 1, in
order to consider both the “unknown” buckets c0 and d0.

DP3: FRAMEWORK
The key intuition of DP3 is to extend DP2 to general cases where datasets are not totally
ordered by using heuristic sorting to order (ai, bi) pairs.
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Fig 11 (left): DP3A heuristic sorting
Fig 12 (right): DP3B heuristic sorting

The first heuristic sorting method (DP3A - see Fig. 11) sorts one vector according to the
ascending order of the other vector, before repeating this in the opposite manner. DP2 is then
carried out on the two different sets of a and b (derived from the different sortings), and the
mapping of higher probability is chosen. The second method (DP3B - see Fig. 12) uses the
summation of terms to sort (ai, bi) pairs. (ai, bi) pairs are sorted by ai+bi for i∈n. For
example, if a = [0.5,0.6,0.1] and b = [0.5,0.3,0.6], DP3A will produce two sortings: (1) a =
[0.1,0.5,0.6] and b = [0.6,0.5,0.3]; (2) a = [0.6,0.5,0.1] and b = [0.3,0.5,0.6]. DP3B will result
in the following sorting: a = [0.1,0.6,0.5] and b = [0.6,0.3,0.5].

DI-LAA: FINDINGS
To test the accuracy of the different DI-LAA, we used randomly-generated double-column
datasets (i.e. random a, b, c, and d) based on different distributions (for more information,
see Appendix D) - and varying lengths of the vectors, before randomly removing some
ciphertexts in c and d (similar to an unweighted query) to mimic a partial leakage profile. We
introduced different amounts of noise (5%, 10%, 20%) to a and b to better simulate real-life
datasets. We then measured the V-score and R-score (see results table in Appendix E).



Fig. 13: V score and R score against number of plaintexts

Fig. 14: R-score against % error introduced to auxiliary probability

Based on our results, we can conclude that our
attacks have some accuracy in matching the
plaintexts to the ciphertexts (all V-scores and
R-scores are greater than 0). As seen in Fig. 13,
similar to the SI-LAA, as the number of ciphertexts
increases, accuracy of the DI-LAA decreases. For
small datasets with fewer ciphertexts, the DI-LAA
has almost 100% accuracy with V and R scores
close to 1.

As seen in Fig. 14, accuracy is inversely correlated
with the error percentage introduced to vectors a
and b. This is because there is more variance in the
auxiliary dataset and it is more likely that the
auxiliary values do not truly represent the
distribution of ciphertexts.

As seen in Fig. 15, DP3B performs the best for
correlated distributions, followed by DP2, DP3A,
then DP1. Due to randomness introduced to the
auxiliary dataset, DP3B outperforms DP2 as the
mapping with the highest probability may no
longer be the solution with the highest accuracy.
This can be seen from how the difference in
R-score between DP2 and DP3B is the highest
when 20% error is introduced into the auxiliary
data.

It is also noted that DP1 performs the most poorly
as heuristic sorting is not used. Heuristic sorting
would increase the chances of the highest possible
plaintext being mapped to the highest possible
ciphertext for both a-c and b-d pairs, thus
increasing the chance that the mapping of the
highest probability is chosen

As seen in Fig. 16, for cases where the two
distributions are decorrelated (such as in
lin-invlin), the sorting by sum heuristic has a low
accuracy, since the sum of all (ai, bi) pairs become
approximately equal and difficult to sort correctly.
For other combinations of distributions, the
accuracy of the DI-LAA is similar for both
methods of heuristic sorting.

Fig 15: Graph of R-score for different solutions for correlated
distributions

Fig 16: Graph of R-score for DP3A and DP3B for different
distributions

LIMITATIONS OF SI-LAA AND DI-LAA
While both the SI-LAA and DI-LAA have relatively high success rates, they have a few
limitations. Firstly, the speed of computation is slow when n and m are large. For the
SI-LAA, we truncated all experimental databases to the top 100 unique ciphertexts, so the
results were not fully representative of the actual distribution. However, the results are still



largely representative as the values with highest frequency are still chosen. Secondly, all 𝛅
values were rounded to 3 decimal places (i.e. discretization) to reduce the number of unique 𝛅
values and the number of computations required. When the number of unique 𝛅 values is
increased, the number of unique DP[n,m,𝛅] is increased and the total time taken for
computation increases. Thirdly, as the memory of the computer is limited and dynamic
programming depends on the storage of previously calculated values, our program is unable
to run to completion for extremely large datasets.

CONCLUSION
Our research has demonstrated that Leakage Abuse Attacks on partial leakage profiles can be
quite effective. In particular, the Dynamic Programming algorithm can be used to solve the
SI-LAA optimally. When the DP algorithm is used together with the Partitioning
Optimization Approximation Algorithm (POAA), it is able to solve the DI-LAA heuristically.
If both columns follow the same distribution (i.e. totally ordered datasets), the attack becomes
optimal when modified slightly. The accuracy of the DI-LAA can be further improved by
using heuristic sorting methods. When the two columns are decorrelated or random, heuristic
sorting based on only one column should be used. Otherwise, either heuristic sorting by one
column or by sum of ai and bi can be used to achieve results of similar accuracy. A hybrid of
the two different types of sorting can also be implemented so that the sorting that produces a
mapping of higher probability can be chosen. Our attacks show that deterministically
encrypting data is dangerous, even if only partial information is leaked to an eavesdropper.
As a large number of confidential databases (such as healthcare records) are still encrypted
deterministically, we believe that more secure methods for encryption should be implemented
to better protect such data. In the future, we also hope to improve our attacks by finding a
more optimal solution for the DI-LAA.
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APPENDIX

Appendix A: Discussion on Optimality of DP attack

In this discussion, we assume that discretization is not used in the Dynamic Programming
(DP) algorithm. SI-LAA can be solved optimally using the Dynamic Programming Algorithm
as the mapping of the highest probability is always produced. This is because the Dynamic
Programming Algorithm is an improvement on the Brute Force method, which can be proven
to be optimal. This is because the Brute Force method can simply be reduced to the problem
of choosing n-m plaintexts to be mapped to the “Unknown” bucket, while mapping the
remaining m plaintexts to the m known ciphertexts using frequency analysis. Frequency
analysis always maps the largest plaintext to the largest ciphertext, the 2nd largest plaintext to
the 2nd largest ciphertext, and so on and so forth, thus maximising the probability of the
mapping of the m plaintexts to the known ciphertexts. Given that the mapping to known
ciphertexts is always optimal, we now consider the unknown bucket - by taking all possible
subsets of n-m plaintexts (i.e. all possible combinations of plaintexts mapped to the unknown
bucket), we can then choose the subset that produces the mapping of highest probability.
Hence, the Brute Force method can solve the SI-LAA optimally.

The above explanation also supports the key observation mentioned for our Dynamic
Programming Algorithm - the largest plaintext will always be mapped to either the unknown
bucket c0 or the largest ciphertext, because frequency analysis ensures that if the largest
plaintext is not mapped to the unknown bucket, it will be mapped to the largest plaintext.

Although the Dynamic Programming algorithm does fewer computations (nCm subsets) than
the Brute Force Method (m! subsets), it is still guaranteed that the mapping of highest
probability is among the reduced number of subsets calculated. Suppose the Brute Force
Method has a search space S (shown in Fig. 16) with m! subsets, and S can be partitioned into
subspaces for each S⊆[n] where For each case, the mappings are arranged in𝑆| | = 𝑚.
ascending order of their probabilities. The Dynamic Programming algorithm considers only
the right-most mapping with the highest probability of each subspace. It finds the mapping
with the highest probability as it searches all possible subspaces - for every plaintext an, it
considers both options (mapping to c0 or cm) that might produce an optimal mapping. Since
the optimal mapping is one of the mappings found in the last column, the Dynamic
Programming Algorithm will always output the mapping of the highest probability and it is
thus optimal.

Fig. 16: Diagram comparing Search Space of DP algorithm and Brute Force Method



Appendix B: Experimentation for SI-LAA
To prove the experimental accuracy of our attack, we ran the DP attack on various real-life
datasets: 1) Florida state data (auxiliary) and Ohio state data (ciphertext): These two datasets
contain similar sets of information about their respective citizens. We used the “First Name”
and “Last Name” columns; 2) HCUP 2018 (auxiliary) and 2019 (ciphertext) datasets: HCUP
is America’s most comprehensive source of hospital care data. We used the “Age”, “DRG in
effect on discharge date”, “MDC in effect on discharge date”, “ICD-10-CM Diagnosis 1”, and “Race”
columns.

Before conducting the DP attack, if the number of plaintexts and ciphertexts in the dataset
exceeded 100, we extracted only the top 100 values with the highest frequency. If there is a
value in the auxiliary dataset that is not found in the ciphertext dataset or vice versa, we run
the DP attack as per normal. This mimics a real-life situation, as the adversary does not have
this knowledge. For each sampling type, we varied the number of rows queried: 10%, 50%
and 90%. However, when calculating the “R-score” and the “V-score”, these values should
not be incorporated into either numerator because there is no chance of “matching” them
correctly. The success of our attack can be measured without encrypting the data as we
assume that the database is encrypted deterministically, where the encryption system always
produces the same ciphertext for a given plaintext and key.

Appendix C: Partitioning Optimization Algorithm (POAA)
We worked with external mentors (Yao’An and Daren) and implemented the POAA using
C++. The algorithm is shown in Fig. 17.
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Fig 17: POAA

Appendix D: Types of distributions used for DI-LAA
We used the following distributions to generate a, b, c and d for experimentation: (1) lin-lin,
(2) lin-slin, (3) lin-invlin, (4) lin-randlin, (5) lin-zipf, (6) zipf-zipf, (7) zipf-randzipf and (8)
zipf-invzipf. Distributions (3) and (8) are decorrelated distributions, while (1), (2) and (6) are
correlated distributions. The definition of the terms used can be found in the table below.

Distribution Definition

Zipfian (zipf)

Image taken from https://www.iacr.org/archive/eurocrypt2019/114760319/114760319.pdf

Random-zipfian
(randzipf)

Auxiliary values follow a Zipfian distribution but are ordered randomly
in the set.

Inverse-zipfian
(invzipf)

Auxiliary values are opposite to that of a Zipfian distribution.

Linear Distribution with constant gradient of 1

Slow-linear
(slin)

Distribution with constant gradient of 0.5

Inverse-linear
(invlin)

Auxiliary values are opposite to that of a linear distribution

Random-linear
(randlin)

Auxiliary values follow a linear distribution but are ordered randomly in
the set.

Table 1: Definitions of Distributions

https://www.iacr.org/archive/eurocrypt2019/114760319/114760319.pdf
https://www.iacr.org/archive/eurocrypt2019/114760319/114760319.pdf


Appendix E: Results table for SI-LAA and DI-LAA

Table 2: DP Results Table
10% 50% 90%

V-score R-score V-score R-score V-score R-score

Top-x% querying

First Names
(Florida/Ohio)

0.400 0.474 0.180 0.281 0.100 0.202

Last names
(Florida/Ohio)

0.200 0.301 0.040 0.129 0.033 0.106

Age (HCUP) 0.200 0.496 0.149 0.281 0.286 0.312

DRG in effect on
discharge date (HCUP)

0.700 0.729 0.200 0.432 0.100 0.347

ICD-10-CM Diagnosis
1 (HCUP)

0.400 0.682 0.240 0.524 0.156 0.448

MDC in effect on
discharge date (HCUP)

1 1 1 1 0.833 0.981

Weighted querying

First Names
(Florida/Ohio)

0.080 0.157 0.090 0.203 0.091 0.200

Last names
(Florida/Ohio)

0.100 0.266 0.058 0.171 0.042 0.112

Age (HCUP) 0.160 0.423 0.185 0.322 0.245 0.302

DRG in effect on
discharge date (HCUP)

0.300 0.588 0.186 0.457 0.154 0.382

ICD-10-CM Diagnosis
1 (HCUP)

0.310 0.732 0.202 0.531 0.184 0.465

MDC in effect on
discharge date (HCUP)

0.633 0.573 0.838 0.921 0.833 0.981

Unweighted querying

First Names
(Florida/Ohio)

0.020 0.021 0.052 0.121 0.094 0.187

Last names
(Florida/Ohio)

0.030 0.024 0.026 0.089 0.039 0.109



Age (HCUP) 0.060 0.056 0.170 0.240 0.279 0.298

DRG in effect on
discharge date (HCUP)

0.050 0.125 0.102 0.297 0.162 0.371

ICD-10-CM Diagnosis
1 (HCUP)

0.080 0.128 0.102 0.304 0.153 0.422

MDC in effect on
discharge date (HCUP)

0.567 0.785 0.585 0.714 0.742 0.954

Table 3: DP1 Results Table
Set-up V-score R-score

10 ciphertexts

lin-lin 0.928 0.884

lin-randlin 0.913 0.890

lin-slin 0.978 0.966

lin-invlin 0.900 0.897

lin-zipf 0.925 0.920

zipf-zipf 0.925 0.969

zipf-invzipf 0.950 0.935

zipf-randzipf 0.963 0.982

50 ciphertexts

lin-lin 0.046 0.006

lin-randlin 0.033 0.027

lin-slin 0.25 0.013

lin-invlin 0.036 0.046

lin-zipf 0.052 0.234

zipf-zipf 0.047 0.328

zipf-invzipf 0.037 0.170

zipf-randzipf 0.043 0.125

100 ciphertexts

lin-lin 0.057 0.067



lin-randlin 0.050 0.050

lin-slin 0.049 0.056

lin-invlin 0.045 0.051

lin-zipf 0.049 0.086

zipf-zipf 0.061 0.286

zipf-invzipf 0.096 0.301

zipf-randzipf 0.056 0.178

Table 4: DP2 Results Table
Set-up V-score R-score

10 ciphertexts, 10000 rows

lin-lin, 5% error 0.938 0.984

lin-lin, 10% error 0.903 0.935

lin-lin, 20% error 0.646 0.584

zipf-zipf, 5% error 0.875 0.957

zipf-zipf, 10% error 0.813 0.927

zipf-zipf, 20% error 0.736 0.886

10 ciphertexts, 1000000 rows

lin-lin, 5% error 0.0925 0.961

lin-lin, 10% error 0.950 0.974

lin-lin, 20% error 0.875 0.948

zipf-zipf, 5% error 0.889 0.952

zipf-zipf, 10% error 0.878 0.869

zipf-zipf, 20% error 0.925 0.942

Table 5: DP3A Results Table
Set-up V-score R-score

10 ciphertexts, 10000 rows

lin-lin, 5% error 0.963 0.992



lin-lin, 10% error 0.878 0.912

lin-lin, 20% error 0.608 0.548

lin-slin, 5% error 1 0.975

lin-invlin, 5% error 0.863 0.192

lin-randlin, 5% error 0.988 0.212

lin-zipf, 5% error 0.950 0.206

zipf-zipf, 5% error 1 0.965

zipf-zipf, 10% error 0.675 0.789

zipf-zipf, 20% error 0.608 0.548

zipf-randzipf, 5% error 0.913 0.292

zipf-invzipf, 5% error 0.940 0.230

10 ciphertexts, 1000000 rows

lin-lin, 5% error 0.988 0.204

lin-lin, 10% error 0.838 0.891

lin-lin, 20% error 0.650 0.799

lin-slin, 5% error 1 0.989

lin-invlin, 5% error 1 0.103

lin-randlin, 5% error 0.988 0.204

lin-zipf, 5% error 1 0.206

zipf-zipf, 5% error 1 0.980

zipf-zipf, 10% error 0.715 0.800

zipf-zipf, 20% error 0.800 0.847

zipf-randzipf, 5% error 0.913 0.367

zipf-invzipf, 5% error 0.940 0.237

Table 6: DP3B Results Table
Set-up V-score R-score

10 ciphertexts, 10000 rows



lin-lin, 5% error 0.975 0.992

lin-slin, 5% error 0.963 0.975

lin-invlin, 5% error 0.179 0.192

lin-randlin, 5% error 0.169 0.212

lin-zipf, 5% error 0.107 0.206

zipf-zipf, 5% error 0.900 0.965

zipf-randzipf, 5% error 0.178 0.292

zipf-invzipf, 5% error 0.098 0.230

10 ciphertexts, 1000000 rows

lin-lin, 5% error 0.988 0.996

lin-slin, 5% error 0.975 0.989

lin-invlin, 5% error 0.113 0.103

lin-randlin, 5% error 0.206 0.204

lin-zipf, 5% error 0.125 0.206

zipf-zipf, 5% error 0.938 0.980

zipf-randzipf, 5% error 0.275 0.367

zipf-invzipf, 5% error 0.113 0.237


